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Abstract

Fingerprint recognition is becoming a standard means of authentication on mo-
bile devices. The total number of mobile devices incorporating a fingerprint
scanner is expected to reach 990 million in 2017, and over 50% of all smart-
phones are expected to have a fingerprint sensor by 2019.

With the introduction of Android 6.0, a new fingerprint authentication API
has been added to the operating system. Application developers can use the na-
tive API to secure sensitive data and authorise certain actions, such as financial
transactions.

In this paper, we describe two methods to circumvent fingerprint authenti-
cation in Android 6.0 resulting in false positive recognition. The first method
involves replacing a critical software component to always provide a positive au-
thentication result. In the second method, we intercept and alter Inter-Process
Communication. This also enabled us to bypass fingerprint authentication, but
is less detectable for end-users than the former method.

Additionally we also perform a replay attack on Android’s Keystore, forcing
the ”release” of authentication-gated cryptographic keys.

Please note that all findings required root access and can only be practically
exploited when having physical access.
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CHAPTER1

Introduction
An emerging trend in the field of authentication on mobile devices is biometrics.
The release of Apple’s iPhone 5S, with its implementation of Touch ID, strongly
contributed to the adoption of fingerprint authentication by the general public.
By March 2015 over 18 million of these phones have been sold to end users
[1]. The total number of mobile devices incorporating a fingerprint scanner is
expected to reach 990 million in 2017 [2], and over 50% of all smartphones are
expected to have a fingerprint sensor by 2019 [3].

The adoption of the fingerprint as a standard means of authentication on
mobile devices, can be attributed to the fact that (on average) users prefer this
method over traditional PIN [4, 5]. It is suggested that fingerprints should be
used in mobile payments instead of PINs [6]. This approach is now incorporated
by Google Play, in which users can use their fingerprint to authorise payments
[7].

As the adoption and capabilities of fingerprint authentication increases, se-
curity becomes an increasing factor as well. Prior to the release of Android 6.0,
hardware vendors used their own fingerprint recognition implementation, this
development has led to several security vulnerabilities [8]. In an effort to im-
prove security, Android 6.0 standardises support for fingerprint authentication.
Its specification outlines requirements which compliant devices must adhere to
[9].

1.1 Contribution

In this paper we introduce a method of reviewing a new implementation of fin-
gerprint authentication on mobile devices. We identify the components involved
and use existing research provided by security experts and the scientific com-
munity to perform a thorough analysis of component interaction. Additionally
we show methods to manipulate the authentication system’s behaviour.

1.2 Research question

Our main research question is: Is it possible to bypass Android 6.0’s fingerprint
authentication, by modifying its vendor-independent software components, or by
tampering with their interprocess communication?

To answer this question we investigate which software components play a
key role in fingerprint authentication. Subsequently, we research how genuine
software components can be replaced with malicious counterparts.

We will also investigate the components’ Inter-Process Communication (IPC)
and explore methods of manipulating the IPC data.
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1.3 Related work

There is a considerable amount of research regarding fingerprints and attacks
against fingerprint authentication. Demonstrated attacks range from hardware
attacks, such as faking fingerprints [10, 11], to software-based attacks.

An example of a study on software-based attacks can be found in Y. Zhang
et al. [8], where multiple vendor implementations of fingerprint authentication
systems on Android prior to version 6.0 are assessed. Several vulnerabilities
were discovered, some compromised fingerprints and enabled the researchers to
perform authorised actions without authenticating.

As will be elaborated in the next chapter, the fingerprint authentication sys-
tem consists of multiple components which use IPC to communicate. Software-
based attacks on the IPC architecture of the Android operating system are
described by Artenstein & Revivo [12]. They investigate on intercepting IPC
traffic by injecting a library into an arbitrary process. A significant part of our
research builds on their findings.

Despite the amount of research on fingerprint authentication, no comparable
research related to Android 6.0’s native fingerprint authentication has been
published. Our research aims to contribute to this knowledge by investigating
the implementation of fingerprint authentication on devices running Android
6.0.

1.4 Report structure

This first chapter of this report is the introduction, where the relevance of this
subject and the research question are elaborated. In Chapter 2, we describe
the software components involved in fingerprint authentication and introduce
some essential concepts to the Android OS. Chapter 3 elaborates on the scope
of this research and describes an outline of the research in general. In the fourth
chapter we describe the findings of our research and the circumstances in which
they were obtained. In Chapter 5 we will discuses the limitations of our results.

A summary of the most important limitations and an answer to our research
question is provided in Chapter 6. In the seventh chapter we make several
recommendations on how the risks of our proposed attacks can be mitigated.
Finally, Chapter 8 and in the last chapter we will propose some future work.

We aimed to write a concise report on a comprehensive topic (Android 6.0
fingerprint authentication). Therefore, throughout this document, we refer to
several essential concepts elaborated upon in the appendices. Readers unfamiliar
with Android concepts such as Binder IPC and the Keystore may refer to the
Appendix for more information.
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CHAPTER2

Authentication system
In this chapter we elaborate on the components involved in fingerprint authen-
tication. Some important concepts, such as IPC in Android, are also briefly
explained.

2.1 Software components

The fingerprint authentication system consists of multiple components. Com-
ponents close to third-party applications (apps) have a higher abstraction level
than components closer to the hardware. The relation between these compo-
nents is shown in Figure 2.1: Fingerprint authentication system [13].

Figure 2.1: Fingerprint authentication system [13]

The component shown in red represent applications developed by third-party
developers, these are the so-called ”Apps”. Shown in green is the Fingerprint
Hardware Abstraction Layer (HAL), which acts as an interface to the hardware.
The components shown in white are part of Android’s Keystore and are used for
key management. The components highlighted in yellow (FingerprintManager
API, FingerprintService and fingerprintd) are part of the Android Open
Source Project (AOSP) and are therefore independent of hardware vendors and
third-party application developers.
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FingerprintManager API Third-party developers can implement Finger-
printManager to incorporate fingerprint authentication into their Apps. The
API can then be used to authenticate users before performing certain actions.

Applications can also utilise the API in conjunction with the Keystore to
authenticate cryptographic operations [14], this is described in detail in the
appendix (section A.3: Trusted Execution Environment).

The FingerprintManager API wraps the functionality of FingerprintService.

FingerprintService This is a singleton service that runs as part of the system
process [13]. Its main purpose is to handle communication with the fingerprint
daemon (fingerprintd).

It also implements logic for additional abstractions. For instance, it ensures
that third-party applications cannot distinguish individual fingerprints. This is
a typical abstraction that is part of the Android 6.0 specifications [9].

fingerprintd The fingerprintd daemon runs as a separate process and com-
municates with the Fingerprint HAL. It is therefore closest to the hardware of
all generic OS software components.

fingerprintd makes calls through the Fingerprint HAL to the vendor-specific
library to perform operations including fingerprint enrolment, removal and au-
thentication.

2.2 Fingerprint HAL

The Fingerprint HAL is a hardware vendor-specific implementation. It is used
to directly communicate with the fingerprint hardware (sensor).

The HAL defines a set of 9 functions that can be used to perform operations
on fingerprint data stored in the Trusted Execution Environment (TEE) [13].
These functions can be used to enrol, remove and authenticate fingerprints.

Upon enrolment, fingerprints (or its minutiae templates) are stored in the
TEE. Hence, they are stored separately from the Android OS. This prevents
users with elevated privileges (such as the root user) from compromising finger-
print data.

2.3 Hardware-backed Keystore

The availability of a TEE offers an opportunity for Android devices to provide
a hardware-backed Keystore service to the Android OS [15]. The Keystore
consists of multiple components, two of which are [16]:

1. Keymaster (TEE)

2. Keystore service

As described in the appendix (section A.4: Authentication-gated keys), fin-
gerprint authentication can be used to restrict the access of cryptographic keys
to their authentic users. This feature is used to prevent users with elevated
privileges (i.e. the root user) from accessing other users’ private keys.
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The Keymaster is a component of the Keystore that resides in the TEE. It
is used in authentication-gated cryptography. For applications to communicate
with the Keymaster, a communication channel from Android OS to the TEE is
required, Keystore service is used for this purpose.

The Keystore uses authentication tokens (AuthTokens) to make key release
decision, this means it may or may not allow an application to use certain cryp-
tographic keys. AuthTokens are created when a user successfully authenticates
utilising the TEE. AuthTokens are an important feature of the Keystore and
subsequently an important topic of this research. An elaborate description of
what AuthTokens are and how they are used to base a key release decision can
be found in Appendix C: AuthTokens.

2.4 Inter-process Communication

Binder is a framework that is used for Inter-Process Communication (IPC)
on Android. Between FingerprintManager and fingerprintd data messages are
exchanged utilising Binder IPC.

It is also used to interact with the Keystore which makes use a special
extension of the Binder library [16].

Basic knowledge of Binder is essential to understand a significant part our
research. Readers unfamiliar with Binder may refer to the appendix. We provide
a basic introduction to Binder in Appendix B: Binder IPC.
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CHAPTER3

Methodology
This chapter describes how the results were obtained. We elaborate upon the
scope of this project, the test environment, and general outline of this research.

3.1 Scope

The Android 6.0 fingerprint authentication specification encompasses both hard-
ware and software components [9], some being vendor-specific. To infer conclu-
sions on fingerprint authentication in the Android 6.0 OS, we aimed to keep
vendor-dependent components out-of-scope.

However, since all components are part of a coherent system, behaviour of
one component can propagate to another. Therefore, vendor-dependent compo-
nents could not entirely be ignored.

To accommodate for this, we performed our research on a Nexus device
which is offered by the official Google store. Devices in the Nexus line can be
considered Google’s flagship Android products. We expect other vendors to use
these devices as a reference model.

3.2 Test environment

The research was conducted on a rooted LG Nexus 5X running Android 6.0
”bullhead”, build MDA89E with a Linux 3.10.73-gea58e70 kernel. Both the
kernel and build are factory defaults for the Nexus 5X.

Rooting the device was done in a systemless manner. This means that no
modifications were made to the /system partition during the rooting procedure.
Moreover, the systemless approach keeps Security-Enhanced Linux (SELinux)
running in enforcing mode [17]. More information on SELinux and how it is
used to protect the Android OS can be found in the appendix (section A.1:
SELinux).

Throughout our research, we used Android Debugging Bridge (ADB) to
interact with the device. ADB can be used to invoke shell commands on the
device.

We used Android’s Repo tool [18] to obtain the Android 6.0 source code for
build MDA89E, which resides in the android-6.0.0 r12 source tree branch [19].
We used this code to identify critical fingerprint authentication parameters, and
to build modified software components.
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3.3 Research outline

We started this research by determining the role of each component with respect
to fingerprint authentication. From this research we found that fingerprintd
implements all logic on which FingerprintService and FingerprintManager are
built, the latter two can be considered abstraction layers of fingerprintd. There-
fore, we concluded that fingerprintd should be at the core of our research.

After determining we would focus on fingerprintd, an investigation was
launched to establish which function parameters are critical for accepting or
rejecting fingerprints as authentic. This required analysis of how values and
messages are propagated through the fingerprint authentication system. Most
of this research was done by reviewing AOSP source code and adding logging
statements to authentication components.

In the final stage of our research, we made targeted modifications to fingerprintd
and its IPC in order to circumvent fingerprint authentication and unlock en-
cryptions keys from the Keystore.
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CHAPTER4

Results
During this research, we were able to fake a successful authentication attempt,
while supplying a fingerprint that was not enrolled into the device. We also
discovered that it is possible to perform replay attacks against the Keymaster
in the TEE.

In this chapter we will present and elaborate on our results. We also present
a case study to test our results on two distinct implementations of fingerprint
authentication; one utilising the Keystore and one that does not.

4.1 False positive recognition

We found that fingerprint authentication can be circumvented by returning a
non-zero fingerprint ID to FingerprintService. In this section we will elaborate
on how this was accomplished.

4.1.1 Fingerprint ID verification

Whenever a fingerprint is recognised in an authentication attempt, the corre-
sponding ID is sent to fingerprintd from the TEE.

Each fingerprint ID is uniquely associated with a fingerprint on enrolment.
Observed fingerprint IDs did not show predictable patterns and appeared to
be randomly generated. Enrolled fingerprints can have any ID except ’0’. Fin-
gerprint ID ’0’ is reserved, it is returned by the hardware to indicate that the
fingerprint could not be recognised.

The Android OS has no knowledge of which fingerprints are enrolled into the
TEE, nor which identifiers are associated with them. However, the OS needs
some way of knowing whether a fingerprint was enrolled into the TEE or not.

Recall that returned fingerprint IDs are equal to ’0’ when a fingerprint could
not be recognised. This implies that a fingerprint ID that is not equal to ’0’ may
indicate a recognised fingerprint and thus a successful authentication attempt.

Source code analysis revealed that FingerprintService performs a check on
fingerprint IDs received from fingerprintd. The check compares the received
fingerprint ID to ’0’, if it matches the fingerprint was not recognised and au-
thentication fails. However, if it did not match ’0’ it assumes that the fingerprint
was recognised and authentication succeeds.

Finally, the authentication result is forwarded to the instance of Finger-
printManager that initiated the authentication process. The application im-
plementing FingerprintManager consequently performs an action based on the
authentication result. For instance, Android’s LockScreen will unlock the screen
when a fingerprint is recognised and show an error message when it is not.

The activities performed during fingerprint authentication across the differ-
ent components are visualised in Appendix D: Authentication flow.
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4.1.2 Replacing fingerprintd

We can leverage the check in FingerprintService to fake a successful authenti-
cation by running a modified fingerprintd. In our experiment, the source code
of fingerprintd was modified to always send a fingerprint ID that not equal to
’0’. Consequently, in all authentication attempts FingerprintService assumes
the user successfully authenticated and forwards the result to the target appli-
cation.

Source modifications The fingerprint ID returned to FingerprintService can
be altered by modifying the source code of the fingerprintd binary, which is open
source and provided by AOSP.

In the hal notify callback function we substituted the variable holding
the fingerprint ID (as returned by the TEE) with a literal value not equal to zero,
for instance ’42’ as illustrated in Listing 4.1: Callback to FingerprintService.

callback ->onAuthenticated(device ,

42, // msg ->data.authenticated.finger.fid

msg ->data.authenticated.finger.gid);

Listing 4.1: Callback to FingerprintService

Installation After building the modified fingerprintd binary, we replaced the
genuine binary (located at /system/bin/fingerprintd) with the modified ver-
sion. Also, as Android is based on Linux, it we attributed the binary with the
same privileges and owner as its genuine counterpart. The OS would automat-
ically run the modified binary in its attempt to start the genuine fingerprintd.

Figure 4.1: Modified fingerprint daemon
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Exploitation The modified binary always returns the fingerprint ID ’42’ to
FingerprintService. Since this is a non-zero value, authentication appears to
applications to always succeed, even when the fingerprint was not enrolled into
the TEE.

The effect of the modified binary is shown in Figure 4.1: Modified fin-
gerprint daemon. In the diagram an application (implementing Fingerprint-
Manager) initiates an authenticate() call to FingerprintService, it is then
propagated through fingerprintd and finally to Fingerprint HAL which inter-
faces to the TEE. The TEE would find that the fingerprint was not enrolled
into the device and returns the fingerprint ID ’0’. However, when the callback
(onAuthenticated()) passes fingerprintd this value will be altered to something
other than ’0’, in this case ’42’. The FingerprintService would then indicate to
the application that fingerprint authentication succeeded.

User warning As described in further detail in the Appendix (section A.2:
dm-verity), dm-verity detects changes made on the /system partition. When
such changes have occurred, dm-verity presents a warning message to the user
when booting the device. The message will automatically disappear after five
seconds.

Figure 4.2: dm-verity warning [20]

Since the fingerprintd binary is located on the /system partition, dm-verity
will detect that ”the device is corrupt” and show the warning in Figure 4.2: dm-
verity warning [20] during booting accordingly. Therefore, this attack is easily
detectable. Security aware users may recognise this warning and understand
that it might be caused by malicious intent.

4.1.3 Modified IPC

As described in the previous subsection fingerprint IDs are propagated be-
tween different components before reaching the target application. Since these
components also run in separate processes they need a way to communicate,
which is provided for by the Binder framework (see section 2.4: Inter-process
Communication).

By manipulating the IPC between fingerprintd and FingerprintService, we
were (again) able to fake a successful authentication attempt. Binder IPC is
described in more detail in Appendix B: Binder IPC. Readers unfamiliar with
its concepts may refer to it, as it introduces essential knowledge of understand
some important results.
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As discussed in the appendix (section B.2: Interfaces), Binder interfaces
are the connecting element between two communicating processes. Source code
analysis of FingerprintService and fingerprintd revealed that two separate in-
terfaces are being used, one for authentication calls and one for its callbacks.

Capturing data Binder uses Parcels to exchange data among different pro-
cesses. Parcels contain the values of arguments that were passed in the Remote
Procedure Call (RPC). Since Binder IPC is used to communicate data from fin-
gerprintd to FingerprintService, we targeted Parcels being transacted between
these two processes.

Applications using Binder IPC implement the core Binder function library
(libbinder.so). To intercept the Parcels being sent to FingerprintService (con-
taining the fingerprint ID) we modified the source code of the libbinder.so

library. Similar to fingerprintd the source code of the Binder library is also open
source and provided for by AOSP.

We modified the Binder library’s source code to hook on its ioctl() system
call. The ioctl() system call is used to send and receive Parcels to and from the
Binder driver. The hook function processes the buffer containing transaction
data when sending and receiving Parcels. Data flowing to the driver (send)
contain commands prefixed with ”BC” (Binder Command) while data flowing
from the driver (receive) is prefixed with ”BR” (Binder Return Command) [12].

Since the fingerprint ID is contained in traffic sent to the Binder driver by fin-
gerprintd to FingerprintService, we focussed on capturing data in BC TRANSACTION

commands.

Library injection After compiling the modified Binder library, we placed
the modified library in a location readable (and executable) by the system user,
which runs the fingerprintd process. In our experiment we used the system
user’s home folder at /data/system/.

Library injection was then staged by setting the LD PRELOAD environment
variable in a system user shell to include the modified library file. Through this
shell a new fingerprintd process was started (by running the genuine binary)
which then loads the modified Binder library (libbinder.so).

Afterwards, we were successful in intercepting all Binder IPC traffic flowing
from and to fingerprintd.

From an attackers perspective, a benefit of this method is that files on the
system partition are not modified. Therefore, the user will not be warned when
booting the device, as was the case in the previous attack where we replaced
the genuine fingerprintd binary.

Manipulating payload The target Parcel containing the fingerprint ID was
located by applying a filter on the IPC data being transacted. We further
extended the hook function in the modified Binder library to filter Parcels. The
following filter conditions were used:

• Function code

• Interface descriptor

• Fingerprint ID
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In our attempt to obtain the target Parcel, we filtered the Interface Descrip-
tor and the Function Code. If the Function Code and descriptor matched the
filter settings of the Parcel containing the fingerprint ID, we manipulated its
argument values (i.e. the fingerprint ID).

The function that is called when the Parcel arrives is shown in Listing 4.2:
onAuthenticated function prototype. This is the callback function to the Finger-
printService that contains the fingerprint ID (fingerId).

status_t onAuthenticated(int64_t devId ,

int32_t fingerId , int32_t groupId );

Listing 4.2: onAuthenticated function prototype

Within the Parcel data structure, the argument values follow the Interface
Descriptor. By calculating the memory address of the fingerId variable in the
Parcel we were able to write to its memory location. This enabled us to modify
the fingerprint ID being sent to FingerprintService.

A high-level overview of Parcel data manipulation is shown in Figure 4.3:
Malicious IPC data.

Figure 4.3: Malicious IPC data
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4.2 Replaying authentication tokens

Authentication tokens (AuthTokens) are created in the TEE and send to the
Android OS. This allows applications in the OS to use authentication-gated
cryptography. This feature is used to prevent high privileged users (e.g. the
root user) from accessing other users’ private keys.

A more elaborate description of what AuthTokens are and how they are in
authentication-gated cryptography can be found in Appendix C: AuthTokens.
Basic knowledge of its concepts are required to understand the attacks discussed
in this section.

Replaying authentication tokens (AuthTokens) to the Keystore is possible,
despite the measures that should prevent this kind of attack. This behaviour
can be abused perform authentication-gated cryptography using a replayed Au-
thToken. In this section, we demonstrate this attack by making changes to the
fingerprintd binary.

4.2.1 AuthToken table

The AuthToken table is used by the Keystore to store authentication tokens
and to keep track of requested authentication-gated cryptography operations
(crypto operations). The amount of AuthTokens it may contain is bounded
by the amount of crypto operations supported by the Keystore, this value is
vendor-specific. A Keystore must support at least 15 crypto operations, as
described in the Android implementers reference [21]. On our test device, 19
crypto operations were supported with IDs ranging from 1 to 19.

AuthTokens can be added and removed from the table. When the number
of crypto operations exceeds the maximum value (e.g. 15), the least-recently
used AuthToken is removed and replaced with the new AuthToken. The new
AuthToken will be associated with the crypto operation ID of the AuthToken it
replaced. This behaviour is shown in Table 4.1: AuthToken challenge.

4.2.2 Challenge-response

AuthToken may contain a challenge to prevent replay attacks. The challenge
is specified as a ”random” 64-bit integer, that is usually equal to the ID of a
requested crypto operation [16]. If present, the AuthToken is valid only for
crypto operations containing the same challenge.

Since the challenge is usually equal the ID of the requested crypto operation,
there is a very small key-space for this challenge. For instance, with the specified
minimum number of crypto operations (i.e. 15), only 4-bits of the entire 64-bit
key-space are used.

Moreover, since crypto operation IDs are reused when an AuthToken is re-
placed in the table, the same challenge is also reused. This is caused by the fact
that the challenge is equal to the crypto operation ID. This behaviour is shown
in Table 4.1: AuthToken challenge.

The Keymaster expects a response to this challenge, meaning that the old
AuthToken it replaced is equally valid. For instance, the second and last Auth-
Token from Table 4.1: AuthToken challenge will be both valid responses to the
Keymaster’s challenge ’2’, even though their timestamps differ. This behaviour
be abused to perform replay attacks on the Keymaster in the TEE.
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Crypto operation ID AuthToken
ID = 1 AuthToken(challenge: 1, timestamp: 10000)
ID = 2 AuthToken(challenge: 2, timestamp: 11000)
ID = 3 AuthToken(challenge: 3, timestamp: 12500)
... AuthToken(challenge: ..., timestamp: ...)
ID = 14 AuthToken(challenge: 14, timestamp: 19000)
ID = 15 AuthToken(challenge: 15, timestamp: 19500)
ID = 1 AuthToken(challenge: 1, timestamp: 24000)
ID = 2 AuthToken(challenge: 2, timestamp: 25000)

Table 4.1: AuthToken challenge

4.2.3 Retrieving the AuthToken

In order to perform a replay attack, a valid AuthToken must first be obtained.
In our research, we obtained this token by replacing the genuine fingerprintd
with a modified version.

As described in the appendix is more detail (Appendix C: AuthTokens), all
AuthTokens pass fingerprintd on their way to the Keystore. The fingerprint
trustlet in the TEE sends a message containing the AuthToken to fingerprintd.

We added logging statements to fingerprintd to print the contents of the
message containing the AuthToken. The raw content of one of these tokens is
shown in Table 4.2: AuthToken capture.

Field Type Value
AuthToken Version 1 byte 0
Challenge 64-bit unsigned integer 2
User SID 64-bit unsigned integer 6642721394326884821
Authenticator ID 64-bit unsigned integer1 13239196515636370186
Authenticator type 64-bit unsigned integer1 33554432
Timestamp 64-bit unsigned integer1 12838108872145108992
AuthToken HMAC 256-bit blob 243-169-20-......-57-7-76

Table 4.2: AuthToken capture

An overview of the meaning of all fields is described in on-line documen-
tation [16]. However, for the purpose of our research we primarily focus on
the challenge field. As can been seen from Table 4.2: AuthToken capture, the
AuthToken contains a challenge with the value ’2’.

It is important to note that used AuthTokens may reside in memory for some
time and could consequently be obtained after they are used. In our research,
we were able to retrieve used AuthTokens by reading from their memory ad-
dresses through modifying fingerprintd. The modified daemon printed the last
used AuthToken regardless of the authentication attempt’s outcome. The code
snippet in Listing 4.3: Capturing the AuthToken shows how the AuthToken data
is being read from the memory address.

1In network order (big endian)
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if (true) { // Removed fingerprint authentication check

const uint8_t* hat = reinterpret_cast <const

uint8_t *>(&msg ->data.authenticated.hat);

printToLog(hat); // obtain old AuthToken

instance ->notifyKeystore(hat ,

sizeof(msg ->data.authenticated.hat ));

}

Listing 4.3: Capturing the AuthToken

Additionally, we were able to read old AuthTokens from memory, even if it
was previously used by the genuine fingerprintd. After replacing the genuine
binary with our modified binary, we successfully captured the last used Auth-
Token. Attackers can therefore retrieve used AuthTokens without having prior
access to the device.

4.2.4 Replaying the AuthToken

To successfully replay a replay attack against the Keymaster, we must provide a
valid response to its challenge. Therefore, we first need to force the Keymaster
to provide a challenge for which we have a valid response. This can be done by
requesting new crypto operations.

Every time a crypto operation is requested, a new AuthToken is generated,
this will eventually lead to the reuse of a crypto operation ID in the AuthToken
table and thus to the reuse of a challenge.

This behaviour is shown in Appendix E: AuthToken challenges, where sid

is the challenge sent by the Keymaster. As can be observed from this log, the
challenge ’2’ (of our captured AuthToken) is first used on 07:09:58 and later
reused on 07:12:57.

To confirm the viability of replay attacks, we modified fingerprintd so that
it would always provide the AuthToken from Table 4.2: AuthToken capture to
the Keymaster.

In our experiments we observed that, if the Keymaster provided a matching
challenge value ’2’, the Keystore would allow performing cryptographic oper-
ations authenticated by the replayed AuthToken. The modifications made to
fingerprintd are shown in Appendix F: Replay AuthToken code. It was modified
to always return the AuthToken as obtained in Table 4.2: AuthToken capture.

4.2.5 Exploitability

The exploitability of this replay attack depends on two factors:

1. Accessibility of the AuthToken

2. Validity of the AuthToken

In our experiments, we obtained a used AuthToken by reading the memory
address where the message containing the AuthToken resides. However, the
memory address will not hold the AuthToken indefinitely.
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We observed a varying lifetime ranging from less than 10 minutes to over an
hour. This is important as the time-frame in which a valid AuthToken can be
obtained is crucial for exploiting replay attacks. Once an AuthToken has been
captured it can be replayed for as long as it remains valid.

An AuthToken’s validity is determined by its timestamp; a Keymaster prop-
erty KM TAG AUTH TIMEOUT can be set by hardware-vendors to specify when an
AuthToken should time-out [21]. However, during our research we did not
observe such a time-out. We were able to replay old AuthTokens as long as
the test device did not reboot. Presumably this is due to the vendor setting
KM TAG AUTH TIMEOUT to the largest possible value, which translates to a validity
period of approximately 136 years [22] (or until the device reboots).

4.3 Case studies

In order to observe the behaviour of modifications made to fingerprintd and the
Binder IPC, we reviewed two applications implementing Android 6.0’s finger-
print authentication. The two case studies highlight the difference in using the
Keystore to verify authentication attempts.

4.3.1 FingerprintDialog

To familiarise application developers with implementing fingerprint authentica-
tion on Android 6.0, the OS developers provide the FingerprintDialog example
application [23]. It demonstrates using fingerprint authentication to authorise
a purchase as shown in Figure 4.4: FingerprintDialog user interface [24].

Figure 4.4: FingerprintDialog user interface [24]

On start-up the application generates a key which is stored by the Keystore.
Access to the key is requested by the application after each authentication at-
tempt to perform a cryptographic operation. Since cryptographic operations
can only be performed by the Keymaster when a user successfully authenticates,
the applications can verify the authenticity of this action. This implementation
demonstrates the added security layer of the Keystore in authentication-gated
cryptography, since it makes use of the TEE.
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During the research project we utilised the FingerprintDialog example ap-
plication to verify the behaviour caused by replacing fingerprintd with a ”ma-
licious” counterpart and manipulating the IPC. In both cases we were able to
successfully authenticate with fingerprints that were not enrolled into the de-
vice. Moreover, by replaying AuthTokens to the Keystore, the application was
able to perform cryptographic operations through Keymaster. This resulted in
a ”successful purchase” with an unauthentic fingerprint.

4.3.2 bol.com

In the final week of our research, the Dutch on-line retailer bol.com updated its
application adding fingerprint authentication support [25].

The application performs authentication when a user is required to login,
observable when editing personal details or when checking out.

By running a modified version of fingerprintd we were able to login success-
fully. This might be exploited to make purchases by unauthentic users.

The bol.com application does not use the Keystore to verify authentication
attempts. Therefore, replaying AuthTokens to circumvent this authentication
is not required. We were able to bypass authentication by only altering the
fingerprint ID sent to FingerprintService.
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CHAPTER5

Discussion
In this chapter we will discuss our findings and elaborate on exploitability of
the discovered vulnerabilities.

5.1 Vendor-dependent findings

In our research we performed all experiments on a Nexus 5X device. We found
that fingerprint authentication can be circumvented and key release decisions
by the Keymaster can be manipulated by performing a replay attack using
captured AuthTokens.

The latter finding is dependent the hardware vendors’ implementation of
random challenges on AuthTokens. It can therefore not be concluded that every
Android 6.0 device is vulnerable to this attack. However, as the official Android
references state that the challenge is usually the ID of the requested crypto
operation [16], it is likely that many vendors will implement this accordingly.

5.2 Feasibility of attacks

During our research distinguished two scenarios:

1. authentication alone is enough to perform the desired action;

2. cryptographic operations incorporating the Keystore are performed on top
of authentication (authentication-gated cryptography).

Unlocking the Android LockScreen is a typical example of the first scenario,
while as decrypting sensitive data is a typical example of the second scenario.

In both cases, modifying the fingerprintd binary can be used to achieve this
goal. The main drawback of this approach from an attackers perspective, is
that a warning message will be shown to the user upon booting the device.
This might be detected by the user and is less suitable for attacks where the
user retains his device (e.g. for planting backdoors).

However, to prevent warning messages from appearing, IPC traffic may be
modified instead of the binaries on the /system partition. The disadvantage
of this approach is that it may not be possible to perform replay attacks on
AuthTokens. During our research we were not able to intercept the Binder
Parcel that contains AuthTokens. This is probably because another, extended
library is used for this purpose [16] which we did not investigate.

Both replacing the fingerprintd binary and manipulating IPC require ele-
vated privileges (utilising the root user). This is the most important limitation
to our discovered attacks.
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Replacing fingerprintd Manipulating IPC
Requires root access Yes Yes
Shows user warning Yes No
Key release Yes Unknown

Table 5.1: Attack feasibility

It is a valid question to ask if authentication mechanism should restrain
attacks against a user with those privileges. However, the TEE should not
be affected when Android OS is compromised. Therefore, we argue that the
AuthToken replay attacks should be prevented.

Table 5.1: Attack feasibility shows a comparison of the two attacks.
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CHAPTER6

Conclusion
In our research we investigated two methods to bypass Android 6.0’s finger-
print authentication. In the first, we replaced the fingerprintd binary. In the
second, we intercepted and modified IPC between the fingerprintd process and
FingerprintService service.

We were able to bypass Android 6.0’s fingerprint authentication and, perhaps
more severely, we were able to perform replay attacks on Keystore components
in the TEE. This enabled us to force the ”release” of authentication-gated cryp-
tographic keys without performing proper authentication.

Both replacing the fingerprintd binary and manipulating IPC require esca-
lated privileges (utilising the root user). This is the most important limitation.
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CHAPTER7

Recommendations
This section will contain recommendations and mitigations towards parties in-
volved in using or developing the fingerprint authentication system in Android
6.0.

7.1 OS developers

An Operating System should be a platform on which application developers can
rely, whether is for correct memory management or adequate security measures.
The android OS developers should therefore try to harden their security and
improve the clarity of their implementer references.

7.1.1 dm-verity

In one of our attacks we replaced the fingerprintd binary. This triggered a warn-
ing message through dm-verity during booting. The warning message would dis-
appear after five seconds and the device would boot like normal. We recommend
to leverage this mechanism to require some user interaction before proceeding;
for instance by pressing a button.

We also experienced that the warning message did not supply sufficient in-
formation to the user to determine what caused it, it merely showed that the
system was corrupt. We recommend to make the warning more descriptive.

7.1.2 Unambiguous implementer references

Replay attacks against the Keymaster in the TEE are possible because a weak
challenge is used. The implementer reference states the challenge is a random
integer to prevent replay attacks, but at the same time states that it usually
the ID of a requested crypto operation [16].

From these statements it could be deduced that the ID of a crypto operation
must also be random, but as we have shown in our research, this is not how every
vendor interpreted it. This is why we recommend Operating System developers
to provide unambiguous implementer references and specifications.

7.1.3 Erase AuthTokens after use

During our experiments we found that the AuthToken sometimes remained in
memory for over an hour, in other cases it was removed before 10 minutes. To
mitigate the risk of used AuthTokens being obtained, we recommend to remove
it from memory after it is used. This would mitigate the risk of replay attacks.
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7.1.4 Only offer secure authentication methods

There are two fingerprint authentication methods used in Android 6.0:

1. authenticating only;

2. authenticating in conjunction with the Keystore (authentication-gated
cryptography).

As described in subsection 4.3.2: bol.com, applications may use the first
method where they should have ideally used the more secure second method, for
instance when authorising payments. Although this decision may be considered
the responsibility of application developers, we argue that an operating system
should only offer the most secure authentication methods.

7.1.5 Protect Binder parcels’ integrity

In our experiments we confirmed that the Binder parcels’ integrity is not guar-
anteed. This enabled us to manipulate the IPC and thereby circumventing
fingerprint authentication. We recommend that the integrity of these parcels
are protected, or that they are encrypted as a whole.

There are already research studies on how this can be done [26].

7.2 App developers

Third party application developers use the fingerprint API offered by the An-
droid OS to incorporate fingerprint authentication into their applications. They
may use it to authenticate a user, or authorize sensitive actions.

Application developers should not trust rooted devices and use the Keystore
to authorize sensitive actions.

7.2.1 Distrust rooted devices

We demonstrated methods to compromise fingerprint authentication in Android
6.0. These methods require root access to perform certain privileged actions.
Applications developers should be aware that root privileges exceed normal user
privileges, which may be abused for malicious intent. We recommend that ap-
plication developers incorporate root detection software into their applications,
and exit the application if privilege escalations is detected.

7.2.2 Use the Keystore

As discussed in subsection 4.3.2: bol.com, applications using fingerprint authen-
tication to authorize sensitive actions (e.g. authorise payments) should use the
keystore. The keystore makes use of the TEE which is not be affected when the
Android OS is compromised. We recommend application developers to use this
more secure authentication method.
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7.3 End users

End users should be able to rely on the secure implementation of an OS as well
as the applications they are using. However, some actions by the end users may
weaken the security of the underlying OS and consequently the applications that
run on it.

End users should be aware that privilege escalations (e.g. rooting) weaken
the resilience of their device to certain attacks considerably. Users who want
to use applications incorporating fingerprint authentication should not escalate
their privileges on their device. Vice versa, users who want to use escalated
privileges should not use applications incorporating fingerprint authentication.

23



CHAPTER8

Future work
In this section we will propose future work that can be done build on or related
to our research.

8.1 Keystore

During our research we found that the authentication-gated keys are an impor-
tant security feature of fingerprint authentication in Android 6.0. An integral
part of authentication-gated keys is the Keystore. We found that the Keymas-
ter is vulnerable to replay attacks, however we did not perform an extensive
research on the Keystore itself.

8.2 Gatekeeper

Like fingerprint, gatekeeper is a ”trustlet” in the TEE that authenticates users.
The Gatekeeper system performs authentication based on passwords an pat-
terns. Gatekeeper is also used to protect authentication-gated keys, and offers
similar functionality as fingerprint authentication. We assume it is likely that
vulnerabilities found in our research also apply to Gatekeeper, however new
research should provide a decisive answer.

8.3 Other fingerprint functions

In our research we focussed solely on the authenticate() function as offered by
the Fingerprint HAL. However, there are several other functions available such
as enroll(), remove() and set active group() that are worth investigating
as well [13].

8.4 Fingerprint authentication resources

The fingerprint authentication components use resources on the Android OS. For
instance, one of these resources is an encrypted database that seemingly stores
some fingerprint data1. Furthermore, applications save their authentication-
gated encryption keys on disk2. Investigating these resources may reveal vul-
nerabilities that have not yet been identified.

1located at texttt/data/system/users/{userID}/fpdata/user.db
2located at texttt/data/misc/keystore/{userID}/
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8.5 Vendor specific (HAL) libraries

In our research, we focused on the vendor-independent software components
used in fingerprint authentication and their IPC. We left the vendor-specific
libraries almost entirely out-of-scope. However, it might be interesting to look
into different implementations by distinct vendors. These libraries are close
to the hardware and investigating these may reveal vulnerabilities we did not
encounter during our research.

8.6 Cross-reference findings

All our tests were performed on an LG Nexus 5X device. Some findings may
not apply to different vendors or even different devices by the same vendor. It
might prove worthwhile to cross-reference our findings and provide a decisive
answer if they apply and to what extent it affects other devices running Android
6.0.
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APPENDIXA

Security enhancements
Android 6.0 introduces new security features [27]. In this appendix, we will
discuss the new security features that are relevant to our research.

A.1 SELinux

SELinux is a kernel module that provides a mechanism for supporting access
control security policies. Android uses SELinux to enforce Mandatory Access
Control (MAC) over all processes, even processes running with root privileges.
This means that if a process which is running as the root user is compromised
(such as through a buffer overflow, etc.) then the damage is limited to what
that process can access as defined by the policy [28].

SELinux has two operating modes:

1. enforcing - SELinux is enforcing the loaded policy, meaning that accesses
which are not explicitly allowed cannot be performed.

2. permissive - SELinux is not enforcing the loaded policy, instead it logs
policy violations. Processes can perform accesses that are not allowed by
the policy.

Disabling SELinux is also possible, in this case no policy will be loaded.
SELinux was first introduced to android in version 4.3, where it was put into

permissive mode for the entire system. With the introduction of Android 4.4,
SELinux was partially put in enforcing mode, from version 5.0 Android moved
to full enforcement of SELinux [29]. Android 6.0 introduces new, more strict
SELinux policies.

During our research we kept SELinux in enforcing mode.

A.2 dm-verity

device-mapper-verity (dm-verity) is a verified boot mechanism which guarantees
the integrity of the device software starting from a hardware root of trust up to
the system partition [30]. It does this by using a cryptographic hash tree [31].

This capability is used to warn users of unexpected changes to critical soft-
ware components, such as those on the /system partition. Depending on what
caused the verification to fail, users will be shown one of three warning messages.
Users will always be given the option to continue using the device at their own
discretion.
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A.3 Trusted Execution Environment

The TEE is a secure area of the main processor in a smart phone. It ensures
that sensitive data is stored, processed and protected in an isolated, trusted
environment [32]. The TEE is separated from the rest of the device’s hardware,
meaning that Android OS cannot directly access the TEE.

The android 6.0 specifications demands that if a device implementation in-
cludes a fingerprint sensor, it must have a TEE, where it performs fingerprint
matching [9]. Raw fingerprint data or derivatives (e.g. minutiae templates)
must be stored in the TEE [13]. This means that rooting the device cannot
compromise biometric data, since this is stored outside of the OS.

A.4 Authentication-gated keys

Android 6.0 also introduces the concept of user-authentication-gated crypto-
graphic keys. These keys are only ”released” by the keystore on a successful
authentication attempt by the user. Applications can then use the keystore to
perform cryptographic operations [33]. To achieve this, two key components
need to work together. First is the cryptographic key storage, where secret keys
are stored. Second are the user authenticators that may attest to the user’s
presence and successful authentication [16].

In Android 6.0 storing these cryptographic keys is facilitated by the Keymaster,
while Gatekeeper (for PIN/pattern/password authentication) and Fingerprint

(for fingerprint authentication) act as the user authenticators. These compo-
nents reside in the TEE as is shown in Figure A.1: Trusted Execution Environment.

Figure A.1: Trusted Execution Environment
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APPENDIXB

Binder IPC
Depending on implementation, it may be necessary for one process to access the
memory of another process. On Android, an infrastructure for IPC is provided
by the Binder framework.

B.1 Communication model

As an introduction to the concept of Binder IPC, we summarise its communi-
cation model.

The Binder framework implements the client-server architecture. During
IPC, data flows between a Proxy (client) and Stub (server). Before sending data
to a Stub, the Proxy serialises the data and stores it in a Parcel. Afterwards,
the Proxy sends the Transaction (request) to the Stub which in turn processes
the data and returns a Reply (response) [34].

B.2 Interfaces

A primary feature of the Binder framework is that it enables performing RPCs
between two processes. However, both processes need to agree on a common
interface first. A Binder interface not only defines object capabilities in the form
of function prototypes but also enumerates these functions [12]. This allows the
calling process to invoke a remote function by Function Code.

Using a Binder interface, developers can define a Proxy or Stub class which
implements the interface. Creating an instance of such a class results in a Binder
object. Usually Binder objects are published to the OS’s Service Manager upon
creation. This allows one process to query Service Manager for a reference to
an object implementing a specific interface [34, 35].

This also applies in the case of an application wanting to use fingerprint
authentication. Utilising the Service Manager (through FingerprintManager)
to obtain a reference to the FingerprintService system service.

B.3 Serialisation and transmission

As previously mentioned in section B.1: Communication model IPC data is
serialised before transmission in a Parcel. During serialisation the Interface De-
scriptor and function arguments are stored in a Parcel. Subsequently the Parcel
is stored in a binder transaction data structure together with the Function
Code. The final step is storing the transaction data in a binder write read

structure which is used by the ioctl system call in writing the data to the
target process [12].
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Upon initiating the transaction, data is sent to the target process through
the Binder Driver kernel module [34]. The basic data flow between user space
and kernel is shown in Figure B.1.

Figure B.1: Binder transaction
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APPENDIXC

AuthTokens
Authentication tokens are used to grant applications usage of a certain key in
the Keystore. AuthTokens are provided by the fingerprint or gatekeeper trustlets
on a successful authentication attempt, these components reside in the TEE as
shown in Figure A.1: Trusted Execution Environment.

AuthTokens are used to authenticate a user to the Keystore in an authentication-
gated fashion. The Keystore can then be used to perform cryptographic opera-
tions on supplied data as described in A.4.

The integrity of AuthTokens is protected by a HMAC which is a keyed SHA-
256 hash of all data fields in the AuthToken (except for the HMAC field). The
key used to generate the HMAC resides in the TEE [16]. To prevent replay
attacks, a challenge is included in the AuthToken.

Figure C.1: Keystore AuthToken release
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Figure C.1: Keystore AuthToken release illustrates how application can use
AuthTokens to perform cryptographic operations using the Keystore:

1. An application wants to perform a cryptographic operation which requires
the user to authenticate and forwards the authentication request to fin-
gerprintd.

2. fingerprintd will inform its counterpart in the TEE about this request,
which will subsequently activate the sensor and start listening for finger-
prints.

3. The user places his finger on the fingerprint sensor. The fingerprint com-
ponent in the TEE reads the fingerprint, and compares it with minutiae
that have been enrolled in the past.

4. If there is a match, an AuthToken signed with the HMAC key is sent to
fingerprintd.

5. fingerprintd cannot directly communicate with the Keymaster, therefore
it forwards the AuthToken to Keystore Service.

6. Keystore Service subsequently forwards the AuthToken to Keymaster,
which will recalculate the HMAC over all fields (except the HMAC field).

7. If the AuthToken is valid (i.e. the HMAC in the AuthToken matches the
HMAC calculation of step 6) the Keymaster will allow the application to
perform cryptographic operations.
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APPENDIXD

Authentication flow

Figure D.1: Fingerprint authentication flow
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APPENDIXE

AuthToken challenges

01-31 07:09:58.991 ... fingerprintd: authenticate(sid=2, gid =0)

01-31 07:10:01.943 ... fingerprintd: authenticate(sid=1, gid =0)

01-31 07:10:03.717 ... fingerprintd: authenticate(sid=18, gid =0)

01-31 07:10:04.733 ... fingerprintd: authenticate(sid=17, gid =0)

01-31 07:10:08.987 ... fingerprintd: authenticate(sid=16, gid =0)

01-31 07:10:41.734 ... fingerprintd: authenticate(sid=0, gid =0)

01-31 07:10:04.733 ... fingerprintd: authenticate(sid=17, gid =0)

01-31 07:10:08.987 ... fingerprintd: authenticate(sid=16, gid =0)

01-31 07:10:41.734 ... fingerprintd: authenticate(sid=0, gid =0)

01-31 07:12:05.191 ... fingerprintd: authenticate(sid=15, gid =0)

01-31 07:12:10.533 ... fingerprintd: authenticate(sid=14, gid =0)

01-31 07:12:13.274 ... fingerprintd: authenticate(sid=13, gid =0)

01-31 07:12:15.975 ... fingerprintd: authenticate(sid=12, gid =0)

01-31 07:12:18.682 ... fingerprintd: authenticate(sid=11, gid =0)

01-31 07:12:21.707 ... fingerprintd: authenticate(sid=10, gid =0)

01-31 07:12:24.744 ... fingerprintd: authenticate(sid=9, gid =0)

01-31 07:12:13.274 ... fingerprintd: authenticate(sid=13, gid =0)

01-31 07:12:15.975 ... fingerprintd: authenticate(sid=12, gid =0)

01-31 07:12:18.682 ... fingerprintd: authenticate(sid=11, gid =0)

01-31 07:12:21.707 ... fingerprintd: authenticate(sid=10, gid =0)

01-31 07:12:24.744 ... fingerprintd: authenticate(sid=9, gid =0)

01-31 07:12:37.927 ... fingerprintd: authenticate(sid=8, gid =0)

01-31 07:12:41.795 ... fingerprintd: authenticate(sid=7, gid =0)

01-31 07:12:44.471 ... fingerprintd: authenticate(sid=19, gid =0)

01-31 07:12:47.167 ... fingerprintd: authenticate(sid=6, gid =0)

01-31 07:12:49.920 ... fingerprintd: authenticate(sid=5, gid =0)

01-31 07:12:52.643 ... fingerprintd: authenticate(sid=4, gid =0)

01-31 07:12:55.317 ... fingerprintd: authenticate(sid=3, gid =0)

01-31 07:12:57.945 ... fingerprintd: authenticate(sid=2, gid =0)
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APPENDIXF

Replay AuthToken code

if (true) { // Removed fingerprint ID non -zero check

hw_auth_token_t fakehat;

fakehat.version = (uint8_t )0;

fakehat.challenge = (uint64_t )2;

fakehat.user_id = (uint64_t )6642721394326884821 UL;

fakehat.authenticator_id = (uint64_t )13239196515636370186 UL;

fakehat.authenticator_type = (uint32_t )33554432;

fakehat.timestamp = (uint64_t )12838108872145108992 UL;

fakehat.hmac [0] = (uint8_t )243;

fakehat.hmac [1] = (uint8_t )169;

fakehat.hmac [2] = (uint8_t )20;

...

fakehat.hmac [29] = (uint8_t )57;

fakehat.hmac [30] = (uint8_t )7;

fakehat.hmac [31] = (uint8_t )76;

const uint8_t* hat = reinterpret_cast <const

uint8_t *>(& fakehat );

instance ->notifyKeystore(hat , sizeof(fakehat ));

}

Listing F.1: Replaying the AuthToken
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